Optimizing Communication in Embedded System Co-simulation

Ken Hines and Gaetano Borriello
Department of Computer Science & Engineering, Box 352350
University of Washington, Seattle, WA 98195-2350
{hineskj, gaetano}@cs.washington.edu

Abstract

1 1,
14

Y 'y

s

b ;7
P

The Pia h over tradi-

e C

'Y

tional co-simulation methods by permirting dynamic changes in the level of detail when

lati ication ch Is b

system s. Hi ;, it places a

1p
burden on the designer to develop several communication routines, at different levels of
abstraction, for each communication operation. This often requires an intimate under-

tanding of both the simulator and the design being simul s and

demonstrates a way to use communication transaction annotations to provide a plat-

d. This paper p

Jorm independent language for describing fast communication primitives. Additionally,
we show a tool for automatically generating some of these annotations, so that the de-
signer does not even require an intimate understanding of the design under simulation.
This can be important when simulating systems where the design itself is synthesized by
automatic tools, and is liable 10 change frequently.

1 Introduction

The Pia hardware-software co-simulator allows a designer
to specify several communication methods - each at different
levels of detail - for any communication function. The Pia co-
simulator will choose an appropriate method at runtime based
on criteria given by the designer. Previous work has shown
this to be an effective way to substantially reduce simulation
time while retaining many of the the benefits of detailed co-
simulation[Hin96].

Detailed co-simulation can be a good way to validate a de-
sign as well as to evaluate some of its interesting features.
For example, through detailed co-simulation a designer can
gain better insight into resource utilization and the frequency
of shared resource conflicts in a system. Unfortunately, using
a uniform level of detail in co-simulation can be extremely
time consuming and in many cases the designer really only
needs the details for small parts of the system. The rest of
the system is only being simulated to provide a wordload for
the portions of interest. Static mixed-level co-simulation can
eliminate some of these problems, but it forces the designer
to choose the mix of detail at the start of the simulation run.
Once the mix is chosen the designer can't alter it without
stopping the simulation and starting over.

The substantial speedup observed in Pia comes from al-
lowing a designer to select different detail levels for different
paths and to dynamically change this selection. This means
that the designer can tell the simulator things like “use a low
detail method for this path until some specific event occurs,
then switch to the full detail method.”

0-8186-7895-X/97 $10.00 © 1997 IEEE

121

This leaves us with the problem of generating the opti-
mized communication methods. In our previous papers on
Pia, we have assumed that there is a library of standard inter-
faces, and that a designer can usually find a library interface
that is similar enough to any new interface that the alternative
methods can be inherited. If such an interface is not avail-
able or if not all of the optimized routines make sense in the
new interface then the designer will be forced to develop the
routines in addition to the design. There may be cases where
a high level transaction causes state changes in several lower
level interfaces, and it may be important to continue this even
when running at a lower level of detail. An example of this
may be a network interface where we are tracking utilization
at the lowest level. When we step up to a higher level of ab-
straction, we still need to keep track of network utilization,
even though we are no longer performing any work at the
detail level where the logging occurs. It can be difficult for
the designer to write fast communication primitives that take
advantage of every optimization possible, and yet are still as
accurate. In general, the writing of accurate, efficient fast
modes requires a good understanding of:

o The high level behavior of the system.

o The interaction between the system and the architecture
to which it is mapped.

o The operational details of the simulator itself.

This means that a designer could spend a considerable
amount of time generating good fast modes for a particular
architecture, and then find them useless when the target ar-
chitecture changes even slightly.

2 The Pia hardware-software co-simulator

The Pia co-simulator has two significant parts: a language
pre-processor, and a simulator core. The simulator core in
the current version is built on Berkeley's Ptolemy[ea95], but
we are in the process of writing a stand alone core which has
integrated Java support.

Most portions of a system simulated with Pia are writ-
ten in the Pia language, which is a language designed to ex-
plicitly support dynamic communication modes. Systems de-
scribed in Pia consist of four different types of objects:

component A collection of interfaces and behavior.

interface A collection of ports, driver routines and sim-
ple event handlers. These usuaily belong to a compo-
nent.

port A sender and/or receiver of data events. These usu-
ally belong to an interface.

net An interconnection of ports with some arbitration
scheme.

The behavior of a component can be specified with C
programs from separate files. In fact, processors are usu-
ally modeled with Pia components whose interfaces and pins
match those on a physical processor and whose behavior is
provided by the actual software that will run on the physical
processor.

A C program does not require any alteration to run as part
of a Pia component. To run with time accuracy, however,
it must include timing annotations which can be placed in
comment fields.

\T‘\

Fig. 1: Two communicating components

There may be several versions of each communication
routine for Pia to choose from. This can allow the designer to
essentially install switches at each abstraction level (as shown
in Fig. 1) and to dynamically throw these when simulation ef-
ficiency and detail shift in importance.

To simplify timed simulation and to minimize inter-
component synchronization, we make some assumptions
concerning the types of systems for which Pia will be most
commonly used. We assume that

¢ Components aren't interrupted often.

o Components can usually finish all of their work between
interrupts.

o Interrupt handlers will be limited in the extent of internal
state which they can alter. i.e. they will have only a few
addresses in a processors local memory to which they
can write.

122

The simulator core schedules all communication and com-
ponent run time so there is no dependence on operating sys-
tem communication primitives as in[TC95, BST92]. Several
versions of time are maintained during a simulation run. For
example, each component keeps a version of its own local
time, and the main scheduler keeps a version of time called
system time. There is also real time which functions in Pia as
ameta-time. Essentially, we can strobe all of the components’
versions of time at any particular real time and find them to
be different. There are three rules about how the versions of
time must relate to each other:

1. System time is always less than or equal to all local
times.

. System time is always monotonically increasing in real
time.

. Before a component can read a value from outside, that
component's local time must equal system time.

It's not hard to show that if interrupts are not allowed, these
rules will keep the system coherent. For example, we know
that if we follow the rules: whenever we read a value that was
sent to us, every other component will have a local time which
is greater than or equal to our local time, so any components
that would change the value already have. If we consider in-
terrupts, it gets a bit more complex but as long as our assump-
tions hold we can deal with them without much increased
cost. For example, if we can statically determine which ad-
dresses in a component's local memory are either written to
or read from by interrupt handlers, we can have the Pia com-
piler mark those locations as synchronous which means that
the component will have to ensure that its local time matches
system time when it reads or writes to any of these locations.

In many cases, it may be overly conservative to mark all
such locations as synchronous. To ensure that it isn't neces-
sary to do so, Pia includes a checkpoint and restore mecha-
nism for implementing optimistic techniques where there is
loosely bound synchronization space. For example, suppose
there is a pointer in one of the interrupt handlers, and we do
not have tight bounds on the range of addresses to which this
pointer may point. Instead of marking all addresses as syn-
chronous, we can dynamically determine which ones really
count as we run our simulation. To do this, we start off with
no addresses marked as synchronous. If an interrupt handler
attempts to read from or write to an address that isn't marked,
it marks the address and causes an exception which forces the
system to backtrack.

3 Optimizing communication
The systems for which the Pia simulator was designed
have these characteristics in common:

o Many of the lowest level communications routines are
provided by a protocol library.

e The systems are synthesized from some higher level
specification by a tool such as Chinook[COB9S].

In both cases, there are many opportunities to short circuit
detailed communication and provide better simulation perfor-
mance where high detail levels aren't required. For example,
it is usually possible to provide at least one optimized routine
for every library function. (e.g. by increasing the grain-size
of the data transfers)

3.1 Transaction annotations

A designer can specify the behavior of a transaction
through transaction annotations. A transaction annotation is
a small statement which describes the behavior of a transac-
tion. It specifies conditions on the system state that may be
required for the transaction to occur, as well as the alterations
in state caused by the transaction.

A transaction annotation consists of a precondition-action-
postcondition triplet. The precondition and postcondition list
the parts of system state that are relevant to the transaction.
For example, suppose there is aroutine named write_page
which transfers a specified page from component X to com-
ponent Y. The transaction annotation for the entire transac-
tion may look something like this:

{free: buf, page
{X{buf{page}:word[256]}, Y{z{.}:word[256]} }
X.write_page(Y.address, page:word[256])
{X{buf{page}}, Y{z{page}} } }

This annotation tells us that before a successful transaction
occurs, Y has some 256 word buffer named z which can be
overwritten and that at the end of the transaction, the buffer
z must contain the value page - which is the value passed
as a parameter by X. The free keyword in the annotation
indicates variables that are to be considered free variables. It
is important to note that the precondition should contain only
the state required to set up a transaction.

Unfortunately, this particular annotation requires compo-
nents X and Y to be aware of each other - violating the prin-
ciples of modularity. Also, the annotation above is a not a
property of either component, so it cannot be inherited. To
allow better modularity and to facilitate inheritance, we al-
low descriptions of transaction behavior to be split between
a number of annotations. This is important, for example, for
describing all the transactions that can occur between a num-
ber of different components on a bus. For each component we
can specify a partial transaction annotation which describes
its share of an action. The transaction represented by the an-
notation above is shown below represented by two separate
annotations:

{free: buf, page, any
{X{buf{page}:word[256]} }

123

X.write_page(any.address, page:word[256])
{X{buf{page}}} }

{free: page, any
{Y{z{-}:word[256]}}
any.write_page(Y.address, page:word[256])
{Y{z{page}}} }

These mean that as far as X is concerned, a page write be-
haves the same, regardless of the target address and as far as
Y is concerned, a page write from anywhere with it's own
address always triggers the same response.
3.1.1 Timing information in Transaction Annotations

The Pia co-simulator requires timing annotations for time
accurate simulation. It is important to ensure that each of
the optimized versions of any driver routine take the same
amount of simulation time. Transaction timing can be in-
cluded in an annotation as follows:

{free: buf, page, any
time: 400us
{X{buf{page}:word[256]}}
X.write_page(any.address, page:word[256])
{X{buf{page}}} }

This states that the entire transaction takes 400 microseconds.

It is possible to have a timing mismatch between two
halves of an operation. For example, the Y half of the above
transaction may only require 300 us to receive a page. In
these cases, the maximum time of both transactions is always
chosen.
3.1.2 Combining transaction annotations

Transactions which mainly consist of concatenations of
other transactions can usually be easily generated by com-
bining the annotations as follows: Let D.pre refer to the pre-
condition portion of annotation D, D.operation refer to the
operation portion of D and D.post refer to D's postcondi-
tion. A pair of concatenated operations can be combined for
a transaction annotation: Comb(A, B) where

Comb(A, B).pre = A.pre U (B.pre -~ A.post)
Comb(A, B).operation = A.operation : B.operation
Comb(A, B).post = B.post U (A.post — B.pre)

This capability is important in enabling further optimization
of collections of communications, possibly generated and in-
serted automatically, into larger units.

3.2 PiaFaST

The Pia FaST (Fastmode Synthesis Tool) translates trans-
action annotations into optimized communication method
pairs (i.e. a Pia driver routine, and a Pia handler) whose ac-
tion is described by the given annotation. Ideaily, the only
difference between these methods and the original methods

is that the intermediate states may not be the same. Practi-
cally, this will probably not always be the case - otherwise,
there would not be a reason to ever ask for the higher levels
of detail. Some of these differences may occur when the in-
termediate states are used in a complex arbitration scheme,
which may be difficult to capture at a higher level of abstrac-
tion.

3.3 Automatic generation of transaction annotations
Although transaction annotations allow a designer to gen-
erate fast modes without an understanding of the internal
workings of the simulator, the designer still needs to under-
stand both the specification and the design of the system un-
der simulation. This can cause problems if the design is the
output of synthesis tools, because requiring such a high level
of understanding before a system can even be simulated is

counter-productive.
Specification
[

Application
Based Interfuce

Library code

=1 L
Library rostins

Interface

v Transaction annotations r

Pia FaST

Ti:l.l

Library

)

High level optimized
' communication methods

Synthesized

Fig. 2: The Pia FaST can synthesize fast modes from trans-
action annotations. These can be written by hand or generated
by various pre-processors.

3.3.1 Library writer's interface

The library writer should usuaily generate the annota-
tion for all of the library routines. There is a combination
tool which combines concatenated transactions as in Sec-
tion 3.1.2, and this can be used as an aid in generating large
parts of library annotations, however the output of this tool
will usually not be sufficient.
3.3.2 Application writer's interface

The application writer will usually have a very good un-
derstanding of the system specification but since the design
may be the product of a synthesis tool, it may not be so
well understood. The application writer's annotation synthe-
sis tool tries to include as much information as possible in the
annotation. For example, in a system's high level specifica-
tion, there may be a communication function send_frame
that causes different state changes depending on how the sys-
tem is implemented. For example, if somewhere down the
line the frame passes through a network, we may want to log
it at the entry node (even if our lower detailed communication
method doesn't pass the page through the network at all). In
fact, this is an example of where it may not be possible to
include specific information about all changes in system state

124

in the annotation. For example, if we're using a network with
non-deterministic routing and each intermediate node needs
to log every message that passes through it, it is not possible
to determine in advance which nodes will have logged any
particular transaction. In many of these cases. it is probably
best to leave the state unchanged and to simulate at a higher
detail level to gain this sort of information.

The application writer's tool is oblivious to all changes of
state that are not included in either the top level specification
or in annotations for lower level transactions. This means
that if detail is left out of a library annotation, the same detail
will also be left out of any application routine that calls the
function it represents.

4 A Test Run

This section demonstrates the use of both pre-processing
tools and the Pia FaST on a particular application. The
application itself is a video circuit for some limited band-
width path. . This system uses a camera to generate 128 X
128 frames of data (although this size is arbitrary) and passes
them through a link with an available bandwidth of about
100k bits per second. To achieve a frame rate of 14 frames per
second, we need to reduce the bandwidth from nearly 2Mbps
to less than 100k so that it fits (nearly a 20 times reduction).
4.1 High Level Specification

The system contains several compression layers, as shown
in Fig. 3, which is also an example of a Pia drawing. There
are attributes associated with each channel in the drawing.
For example, the (Camera, Wavelet Encoder) channel is
identified as a 16 k byte message channel, so that each mes-
sage can contain a full frame from the camera.

It is important to note that in this picture the camera and
the LCD do not yet represent physical devices. Instead they
are camera and LCD abstractions with arbitrary protocols. It
is expected that a synthesis tool will set up the physical com-
munication protocol when the appropriate physical device is
chosen.

Fig. 3: A high level description of a video circuit

4.2 Mapped version

Fig. 4 shows the system mapped to a particular architec-
ture. The “Compress” and “Decompress” components are
specified as ASICs that include fast microprocessor cores. In

this drawing the camera and LCD do, in fact, represent phys-
ical devices. In this, we import a library protocol for commu-
nicating with these devices.

R r—g

S R e R e R

 Privas Jodk Infiton U sonties ar right button to consolndede
"

Fig. 4: The video circuit mapped to an I2C architecture

4.3 Library specification
We use a simplified I2C library and only specify a few
communication primitives:

e send start and slave address

send byte

send ack

send nack

The transaction annotations for each of these operations are
written by the library writer.

Our library extension consists of one driver routine
(send_pkg) for the master component and one handler
(handle_pkg) for the slave component.

4.4 Resuits
We define 4 distinct run levels for this system:

1. Hardware level : Detailed wires of I2C.

2. Hardware abstraction level : I2C byte level transfers.
3. First library level : Packages of 256 bytes.

4. Application level : Unencoded packages.

All of the optimized run levels (2 through 4 above) are gen-
erated by the Pia FaST, but the hardware abstraction level
and the first library level are stored in the I2C library, while
the Application level is stored in the Compress and Decom-
press component specifications. The transaction annotations
for the hardware abstraction level are manually generated by
a library writer and the annotations for the first library level
and the application level are generated by the combination

tool and the application tool respectively.
Table 1 shows the time to transmit and display 14 frames

under each of the run levels. These tests were performed on a

125

Run Level Run Time (s)
Hardware 375.2
Hardware abstraction 322
Library abstraction 224
Application level 13.72

Table 1: The time for transmitting 14 128 x 128 frames at
various run levels

70MHz Pentium workstation running Linux. It is interesting
to note that for this example, the largest part of the speedup
comes from the methods synthesized from handwritten trans-
action annotations. This is actually because the compression
portion of the circuit reduces the communication bandwidth
sufficiently to allow computation to contribute significantly to
communication time when we use byte wide communication.

5 Conclusion

If used properly, multiple communication methods which
perform the same transactions can improve performance of
embedded system co-simulation, while retaining detail where
required. In this paper, we presented some tools that generate
optimized communication methods and minimize the amount
of lost accuracy for various speedups. In our experiments,
these tools have shown significant speedups over unoptimized
communication and have demonstrated that it is possible to
automatically generate and include these optimizations.

References

[BST92] D. Becker, R.K. Singh, and S. G. Tell. An en-
gineering environment for hardware/software co-
simuiation. In 29th ACM/IEEE Design Automation
Conference. pages 129-134, 1992.

Pai Chou, Ross"B. Ortega, and Gaetano Borriello.
Interface co-synthesis techniques for embedded
systems. In ICCAD Proceedings, 1995.

[COB95]

[ea95] Joseph T. Buck et. al. Almagest, Ptolemy manual

version 0.5.2. UCB, 1995.

Ken Hines. Pia: A framework for embedded
system co-simulation with dynamic communica-
tion support. Technical Report UW-CSE-96-11-
04, University of Washington, November 1996.

[Hin96]

D. E. Thomas and S. L. Coumeri. A simulation
environment for hardware-software codesign. In
Proceedings, International Conference on Com-
puter Design. IEEE CS Press, October 1995.

[TC95]

